Design, Characterization and Analysis of a 0.35 μm CMOS SPAD
نویسندگان
چکیده
Most of the works about single-photon detectors rely on Single Photon Avalanche Diodes (SPADs) designed with dedicated technological processes in order to achieve single-photon sensitivity and excellent timing resolution. Instead, this paper focuses on the implementation of high-performance SPADs detectors manufactured in a standard 0.35-micron opto-CMOS technology provided by AMS. We propose a series of low-noise SPADs designed with a variable pitch from 20 µm down to 5 µm. This opens the further way to the integration of large arrays of optimized SPAD pixels with pitch of a few micrometers in order to provide high-resolution single-photon imagers. We experimentally demonstrate that a 20-micron SPAD appears as the most relevant detector in terms of Signal-to-Noise ratio, enabling emergence of large arrays of SPAD.
منابع مشابه
Large Area CMOS SPADs with very low Dark Counting Rate
We designed and characterized Silicon Single-Photon Avalanche Diodes (SPADs) fabricated in a high-voltage 0.35 μm CMOS technology, achieving state-of-the-art low Dark Counting Rate (DCR), very large diameter, and extended Photon Detection Efficiency (PDE) in the Near Ultraviolet. So far, different groups fabricated CMOS SPADs in scaled technologies, but with many drawbacks in active area dimens...
متن کاملFill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays.
Single-photon avalanche diode (SPAD) detector arrays generally suffer from having a low fill-factor, in which the photo-sensitive area of each pixel is small compared to the overall area of the pixel. This paper describes the integration of different configurations of high efficiency diffractive optical microlens arrays onto a 32 × 32 SPAD array, fabricated using a 0.35 µm CMOS technology proce...
متن کاملCharacterization of Single-Photon Avalanche Diodes in Standard 140-nm SOI CMOS Technology
We report on the characterization of single-photon avalanche diodes (SPADs) fabricated in standard 140-nm silicon on insulator (SOI) complementary metal-oxide-semiconductor (CMOS) technology. As a methodology for SPAD optimization, a test structure array, called SPAD farm, was realized with several junctions, guard-ring structures, dimensions, etc. In this paper, characterization results of the...
متن کاملA SPAD-based 3D imager with in-pixel TDC for 145ps-accuracy ToF measurement
The design and measurements of a CMOS 64 × 64 Single-Photon Avalanche-Diode (SPAD) array with in-pixel Time-to-Digital Converter (TDC) are presented. This paper thoroughly describes the imager at architectural and circuit level with particular emphasis on the characterization of the SPAD-detector ensemble. It is aimed to 2D imaging and 3D image reconstruction in low light environments. It has b...
متن کاملAnalysis and Design of High Gain, and Low Power CMOS Distributed Amplifier Utilizing a Novel Gain-cell Based on Combining Inductively Peaking and Regulated Cascode Concepts
In this study an ultra-broad band, low-power, and high-gain CMOS Distributed Amplifier (CMOS-DA) utilizing a new gain-cell based on the inductively peaking cascaded structure is presented. It is created bycascading of inductively coupled common-source (CS) stage and Regulated Cascode Configuration (RGC).The proposed three-stage DA is simulated in 0.13 μm CMOS process. It achieves flat and high ...
متن کامل